wandb.apis.public.Run
A single run associated with an entity and project.
Run(
client, entity, project, run_id, attrs={}
)
Attributes
Methods
create
create
@classmethod
create(
api, run_id=None, project=None, entity=None
)
Create a run for the given project
delete
delete
delete(
delete_artifacts=(False)
)
Deletes the given run from the wandb backend.
file
file
file(
name
)
Arguments: name (str): name of requested file.
Returns
A File
matching the name argument.
files
files
files(
names=[], per_page=50
)
Arguments: names (list): names of the requested files, if empty returns all files per_page (int): number of results per page
Returns
A Files
object, which is an iterator over File
obejcts.
history
history
history(
samples=500, keys=None, x_axis="_step", pandas=(True), stream="default"
)
Returns sampled history metrics for a run. This is simpler and faster if you are ok with the history records being sampled.
Arguments
samples (int, optional): The number of samples to return pandas (bool, optional): Return a pandas dataframe keys (list, optional): Only return metrics for specific keys x_axis (str, optional): Use this metric as the xAxis defaults to _step stream (str, optional): "default" for metrics, "system" for machine metrics
Returns
If pandas=True returns a pandas.DataFrame
of history metrics. If pandas=False returns a list of dicts of history metrics.
load
load
load(
force=(False)
)
log_artifact
log_artifact
log_artifact(
artifact, aliases=None
)
Declare an artifact as output of a run.
Arguments
artifact (Artifact
): An artifact returned from wandb.Api().artifact(name)
aliases (list, optional): Aliases to apply to this artifact
Returns
A Artifact
object.
logged_artifacts
logged_artifacts
logged_artifacts(
per_page=100
)
save
save
save()
scan_history
scan_history
scan_history(
keys=None, page_size=1000, min_step=None, max_step=None
)
Returns an iterable collection of all history records for a run.
Example:
Export all the loss values for an example run
run = api.run("l2k2/examples-numpy-boston/i0wt6xua")
history = run.scan_history(keys=["Loss"])
losses = [row["Loss"] for row in history]
Arguments
keys ([str], optional): only fetch these keys, and only fetch rows that have all of keys defined. page_size (int, optional): size of pages to fetch from the api
Returns
An iterable collection over history records (dict).
snake_to_camel
snake_to_camel
snake_to_camel(
string
)
update
update
update()
Persists changes to the run object to the wandb backend.
upload_file
upload_file
upload_file(
path, root="."
)
Arguments: path (str): name of file to upload. root (str): the root path to save the file relative to. i.e. If you want to have the file saved in the run as "my_dir/file.txt" and you're currently in "my_dir" you would set root to "../"
Returns
A File
matching the name argument.
use_artifact
use_artifact
use_artifact(
artifact
)
Declare an artifact as an input to a run.
Arguments
artifact (Artifact
): An artifact returned from wandb.Api().artifact(name)
Returns
A Artifact
object.
used_artifacts
used_artifacts
used_artifacts(
per_page=100
)
Last updated
Was this helpful?