wandb.config
Config object
config() -> NoneConfig objects are intended to hold all of the hyperparameters associated with a wandb run and are saved with the run object when wandb.init is called.
We recommend setting wandb.config once at the top of your training experiment or setting the config as a parameter to init, ie. wandb.init(config=my_config_dict)
You can create a file called config-defaults.yaml, and it will automatically be loaded into wandb.config. See https://docs.wandb.com/library/config#file-based-configs.
You can also load a config YAML file with your custom name and pass the filename into wandb.init(config="special_config.yaml"). See https://docs.wandb.com/library/config#file-based-configs.
Examples:
Basic usage
wandb.config.epochs = 4
wandb.init()
for x in range(wandb.config.epochs):
# trainUsing wandb.init to set config
wandb.init(config={"epochs": 4, "batch_size": 32})
for x in range(wandb.config.epochs):
# trainNested configs
Using absl flags
Argparse flags
Using TensorFlow flags (deprecated in tensorflow v2)
Last updated
Was this helpful?